

ELIZADE UNIVERSITY, ILARA-MOKIN FACULTY OF ENGINEERING DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FIRST SEMESTER 2019/2020 EXAMINATIONS

Course Title: STRENGTH OF MATERIALS II Course Code: CVE 311/MEE 309 Instruction: Attempt ANY FOUR questions Time allowed: 3 hours. Units: 3

Question 1 (15 marks)

Explain the following

-		
a)	Bending Moment and Shearing Force	(3 marks)
b)	Bending Stress and Shearing Stress	(3 marks)
c)	Second Moment of Area and Radius of Curvature	(3 marks)
d)	Slope and Deflection in beams	(3 marks)
e)	Shear Centre and Shear flow	(3 marks)

Question 2 (15 marks)

1

il.

11.

11.

11.

1

- a) A circular bar is subjected to an axial pull of 180 kN. If the maximum intensity of shear stress is not exceeding 65 N/mm², determine the diameter of the bar. (5 marks)
- b) Find the shear centre for the I-beam of unequal flanges as shown in Figure Q2b (10 marks)

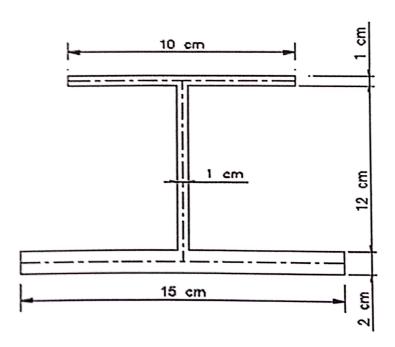


Figure Q2b: Unequal I-Beam Section

Question 3 (15 marks)

a) A uniform T-section beam is 100 mm wide and 150 mm deep with a flange thickness of 25 mm and a web thickness of 12 mm (Figure Q3a). If the limiting bending stress for the material of the beam are 80 MN/m² in compression and 160 MN/m² in tension, find the maximum uniformly distributed load (UDL) that the beam can carry over a simply supported span of 5 m.

100 mm

40.6 mm

109.4 mm

Reference

Figure Q3a: Uniform T-Section Beam

b) A floor carrying a load of 6 kN/m² is supported on a timber joist of 100 mm X 200 mm over a span of 4 m. Calculate the spacing of joists if the bending stress is not to exceed 10 N/mm².

Question 4 (15 marks)

- a) Show that the moment of inertia I_{xx} of a rectangular section is $\frac{bd^3}{12}$ (10 marks)
- b) A simply supported beam 3 m long is carrying a point load at its centre. If the slope at the end of the beam is not to exceed 1°, find the deflection at the centre of the beam.
 (5)

Question 5 (15 marks)

- a) Show that the maximum shearing stress τ_{max} of a rectangular section is 1.5 $\tau_{avg.}$ (6 marks)
- b) A simply supported beam with a point load 'W' at the middle (L/2) has its slope 'i' and deflection 'y' equation as $\pm \frac{Wl^2}{16El}$ and $-\frac{Wl^3}{48El}$. Derive these equations. Take $EI\frac{d^2y}{dx^2}=M$

(9 marks)

(10 marks)

(10 marks)

(5 marks)

14

11

15

Question 6 (15 marks)

- a) A wooden bar is subjected to a tensile stress of 5 Mpa. What will be the values of normal and shear stresses across a section, which makes an angle of 25° with the direction of the tensile stress.

 (5 marks)
- b) Derive expression for stress on an oblique section of a body subjected to a direct stress.